Dynamic Pole Assignment and Schubert Calculus

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic Pole Assignment and Schubert Calculusm

The output feedback pole assignment problem is a classical problem in linear systems theory. In this paper we calculate the number of complex dynamic compensators of order q assigning a given set of poles for a q-nondegenerate m-input, p-output system of McMillan degree n = q(m+p? 1) + mp. As a corollary it follows that when this number is odd, the generic system can be arbitrarily pole assigne...

متن کامل

Schubert Calculus and Puzzles

1. Interval positroid varieties 1 1.1. Schubert varieties 1 1.2. Schubert calculus 2 1.3. First positivity result 3 1.4. Interval rank varieties 5 2. Vakil’s Littlewood-Richardson rule 7 2.1. Combinatorial shifting 7 2.2. Geometric shifting 7 2.3. Vakil’s degeneration order 9 2.4. Partial puzzles 10 3. Equivariant and Kextensions 11 3.1. K-homology 11 3.2. K-cohomology 12 3.3. Equivariant K-the...

متن کامل

Eigenvalues and Schubert Calculus

We describe recent work of Klyachko, Totaro, Knutson, and Tao, that characterizes eigenvalues of sums of Hermitian matrices, and decomposition of tensor products of representations of GLn(C). We explain related applications to invariant factors of products of matrices, intersections in Grassmann varieties, and singular values of sums and products of arbitrary matrices.

متن کامل

Contemporary Schubert Calculus and Schubert Geometry

Schubert calculus refers to the calculus of enumerative geometry, which is the art of counting geometric figures determined by given incidence conditions. For example, how many lines in projective 3-space meet four given lines? This was developed in the 19th century and presented in the classic treatise ”Kälkul der abzählanden Geometrie” by Herman Cäser Hannibal Schubert in 1879. Schubert, Pier...

متن کامل

Braided differential calculus and quantum Schubert calculus

We provide a new realization of the quantum cohomology ring of a flag variety as a certain commutative subalgebra in the cross product of the Nichols-Woronowicz algebras associated to a certain Yetter-Drinfeld module over the Weyl group. We also give a generalization of some recent results by Y.Bazlov to the case of the Grothendieck ring of a flag variety of classical type. Résumé. Nous fournis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Control and Optimization

سال: 1996

ISSN: 0363-0129,1095-7138

DOI: 10.1137/s036301299325270x